
EagleEye
Wi-Fi Monitoring for Non-Technical Users

Pedro M. Sosa, Michele Haque, Oeyvind Reinsve

May 23, 2017

Abstract

The Internet’s rapid expansion and the drop in
networking equipment prices, has lead to the in-
crease of personal wireless networks in house-
holds and small businesses around the world.
However, many of these networks are being ad-
ministrated by users non-technical users who
lack strong networking knowledge. Because of
this, many users are getting subpar network per-
formance, or are suffering from easily detectable
problems. In hopes of bridging this knowledge
gap, we set out to develop EagleEye, a wireless
monitoring tool specifically designed to arm non-
technical people with the proper information to
help them troubleshoot their own personal net-
works. To do this, we surveyed 813 users to
understand their current networking knowledge,
troubleshooting mechanisms, and network mon-
itoring needs. Afterwards, we developed and
released a modular and easily expansible, open
source tool to empower non-technical network
administrators.

1 Motivation

The Boom of Personal Networks Nowa-
days, the Internet has become a critical neces-
sity. More and more people are requiring access
to it, and networking equipment prices has be-
come quite inexpensive. This has led to an in-
crease in personal networks at homes or small
businesses, the vast majority of which are ad-
ministrated by non-technical users. In fact, by
September 2016, it was estimated that in the
U.S. alone, about 75% households had Wi-Fi
networks [1].

While most routers and network devices in-
tended for personal use attempt to be simple to
set up, there is still a gap in knowledge that pre-
vents most users from troubleshooting and fine-
tunning their own networks. Because of this,
many users are getting subpar network perfor-
mance, or are suffering from easily detectable
problems. We believe that to fill this gap, users
need an easy to use network monitoring tool that

could present important information in an acces-
sible manner. It is with this idea in mind that
we set to develop EagleEye, a wireless network
monitoring tool for everyone.

Survey To better understand the needs of the
users, we surveyed 813 (58.6% Male; 41.4% Fe-
male) users about their personal networks.

Our first questions were aimed at accessing
the understanding of Wi-Fi setup and features.
We found that 79.4% of the users interviewed
had at some point set up a personal Wi-Fi net-
work (either at their home, office, or somewhere
else). Of those 30.4% had not renamed the ac-
cess points or changed their default passwords,
and 33% where unaware that they could change
their router’s broadcasting channel.

We then asked users about their troubleshoot-
ing techniques. 69.5% stated that they’re pre-
ferred technique was to “turn the router on and
off again”, while 17.5% of users attempted to
troubleshoot using the internal router’s website
(or other networking tools).

Finally, we briefly described the graphs and
information that would be displayed on our mon-
itoring application, and 76.5% of all users stated
that they would find such tool useful for trou-
bleshooting their wireless networks.

Goals EagleEye seeks to enable users to trou-
bleshoot a variety of problems in their networks.
The most common problem it seeks to help is
performance issues. Performance issues can be
particularly important to solve in environments
with low bandwidth or poor Internet connectiv-
ity. For example, network misconfiguration in
a household at a developing country could com-
pound with the already poor connectivity in the
area, and render the network essentially unus-
able.

Another problem we seek to prevent is inse-
cure Internet access or malicious activity. In the
last couple of years, fueled in part by the IoT
movement, we have seen how wireless devices
connected to the Internet have been hijacked by
Bot-nets to carry out DDoS attacks [2]. We have

1



also witnessed virus, worms, and Trojans that
infect and exfiltrate data from personal com-
puters. EagleEye can help catch any malicious
activity be monitoring the usages of each de-
vice, the amount of data that is being transfered
to/from each device, the protocols that are be-
ing used, and any sensitive data that might be
getting leaked.

2 Related Work
Personal Network Performance Some
studies such as [3], [4], and [5] have focused on
measuring the performance of home networks.
These researchers found that a large portion of
home networks are not actually performing to
the fullest extent. However, the cause of this
is not necessarily well defined. In general they
found that “while wireless links inside homes
tend to be stable over time there is significant
performance variation across links, and many
links are highly asymmetric” [4]. In some
cases, it seemed that variability in link quality
was due to wireless interference due to either
poor router placement, interference from other
electronic devices, or over-usage of a specific
wireless channel. In other cases, it seemed
that minor client misconfiguration, or specific
misbehaving clients would hamper the network.
However, most of these studies pointed that
the reasons for this poor performance could be
varied, and there was a need to further monitor
these networks.

Existing Networking Tools Wireless moni-
toring tools are not a new concept, as there are
many such tools in the market today. Some of
these tools, such as Wireshark [6], are extremely
comprehensive and allow users to analyses net-
works on a deep per packet basis. Others such
as DataDog [7], PRTG [8], LogicMonitor [9],
and Spiceworks [10] provide strong monitoring
features aimed at big businesses with large net-
works. However these types of monitoring tools
require extensive networking knowledge, and of-
fer features that are either too complex or simply
unnecessary for personal networks.

Some companies, such as Asus, Linksys, and
Cisco, provide simple network monitoring soft-
ware inside their routers. However, these tools
have two main drawbacks. First, since these
tools come pre-bundled into their devices, it re-
quires the user to own that specific device. This
is overlooking the millions of networks that use
networking equipment from other companies or
older devices. The second issue, is that some
of these tools are too simple, and only give you
a very general overview of network utilization.

This means that the user has very limited in-
formation to do simple troubleshooting in the
network.

Monitoring Techniques Lastly, it is worth
mentioning that there has been a lot of research
done in the area of wireless monitoring tech-
niques. Uma [11] presents efficient techniques
for network monitoring based on different tech-
niques (data driven, active, passive, and self-
configuring monitoring among others). This pa-
per provides a wealth of ideas, that could be
adapted for many different situations. On our
particular case, we are focusing on passive scan-
ning, since it provides all the information we
need, without directly interacting or modifying
with the home network. Another set of interest-
ing studies has been done focusing on surveying
already existing monitoring tools. Some of these
studies [12], [13] compare the features and ben-
efits of tool used to monitor large business net-
works, such as FlowScan, Autofocus, and Flux-
oscope. Although these two papers focus on
large-scale networks, they provide a good start-
ing place for an effective wireless monitoring de-
sign.

3 Implementation

3.1 Architecture

EagleEye is a monitoring tool that is device ag-
nostic and does not require users to do any mod-
ification to their networking equipment. It is a
portable software that sits on a separate com-
puter which sniffs network traffic. Figure 1 de-
scribes EagleEye’s modular design. This design
architecture allow for easy code modification or
further extension. It has been separated into a
back-end, which monitor and analyses the pack-
ets, and a front-end, which presents and orga-
nizes the pre-processed data.

The current iteration of EagleEye can run on
most Debian Linux distributions, however the
entire program is designed in a modular fash-
ion to allow for future development or porting
onto other devices. It does require a dedicated
wireless interface that can be placed in Monitor
mode.

Back-End Since most networks today are
secure with WPA2, our back-end leverages
dot11decrypt [14] and libtins [15] (a C++ net-
working library) to decrypt our network’s pack-
ets. These packets are then filtered and anal-
yses using Python’s networking library Scapy
[16]. Finally all of this information is saved in a

2



Figure 1: Implementation Structure and
overview of technologies used.

Flask micro-server that will communicate with
out front-end.

Front-End The graphical interface for Eagle-
Eye consists of a dynamically created website.
This website is hosted within the same com-
puter, and it can be accessed with any modern
web browser. This site does frequent AJAX calls
to the Flask server to retrieve any new informa-
tion captured. The site is completely dynamic,
meaning it can accommodate a fluctuating num-
ber of devices, and update quickly. We leverage
Chart.JS to build visually appealing interactive
maps to represent most information.

Packet Analysis An important architectural
design was choosing the correct structure to save
the monitoring information. As one can see in
Figure 2, we decided to split the monitoring
into time-slots (or windows) of 5 seconds. How-
ever, instead of choosing to keep a list of time-
slots containing the network information of each
client’s activity, we choose a list of ‘Client’ struc-
tures. Each client structure contains the basic
client information (IP Address, MAC address,
OS, etc.) and also a ‘report’ structure. Inside
the ‘report’ structure we keep the client’s activ-
ity that happened inside a given 5 second time-
slot. If a client is not active during a given 5

second time-slot, the information is not saved,
thus saving us space.

This structure was specifically chosen because
it decreases the amount of redundant or neces-
sary information, so the overall structure is al-
ways quite small (e.i. we are only logging infor-
mation whenever the client is active). However,
the trade-off is that the front-end will need to
spend more time arranging the data to prop-
erly build charts and calculate basic usage infor-
mation. Nonetheless, the time needed for our
front-end to run the necessary calculations is
substantially smaller than the time needed for
our front-end to retrieve a substantially bigger,
yet organized, data-structure. Furthermore, we
were interested in taking away as much complex-
ity from the back-end as we did not want to risk
loosing packets or introducing other irregulari-
ties on the packet capture.

3.2 Features

The EagleEye web interface (shown in Figure 3)
is separated into two sections: The main aggre-
gate section, and the clients section.

Aggregate Section The Aggregate section
allows users to quickly view the overall us-
age of the network. It presents basic infor-
mation such as the AP name, MAC address,
broadcasting channel, and total amount of data
uploaded/downloaded. It also presents three
graphs:
- Instantaneous Uplink & Downlink
Throughput. This graph is generated by cal-
culating the aggregate amount of information
that was transmitted to and from the router and
dividing by the time it took to transmit that in-
formation.
- Uplink and Downlink Usage. This graph
shows the aggregate total number of packets sent
and received.
- Dropped Packets. This graph shows the
aggregate number of duplicate (retransmitted)
TCP packets.

Clients Section The Client section allows
users to view the behaviors of a specific client
in the network. It presents three graphs:
- Usage This graph shows the amount of pack-
ets sent and received by the client across time.
- Packet Types This graph shows the amount
of TCP vs. UDP packets that a specific client
has used across time.
- Ports This graph shows the top ports used by
the client to communicate across time.

3



Figure 2: Example of the structure used to save
the monitoring information. Notice how in this
case, Client #1 has only been active during the
1st and 5th window (which correspond to time
0s to 5s, and time 20s to 25s)

3.3 Usage

One usage option, would be for users to set up
EagleEye on a small device near the access point,
and allow it to run as they themselves use the
network normally. Then, upon finding an issue
with the network, they could refer to the Ea-
gleEye’s logs to view and better understand the
issue that they are facing. Alternatively, our
software could be used reactively, activating it
only when issues are encountered.

4 Testing & Characteriza-
tion

Since the goal of EagleEye was to create a tool
that would empower non-technical users to trou-
bleshoot their personal networks, we focused our
testing on proving the actual accuracy and re-
sponsiveness of the tool. We also believe that
it would be imperative to do further user test-
ing, because although EagleEye was built using
the initial feedback obtained by surveys and the
previous research done on home networks, the
success of this tool depends on continuous en-
gagement with the users.

4.1 Packet Capture Accuracy

It was important to make sure the data capture
is done in the most accurate manner possible.
To test this we set up a small home network
using a TP-Link router and 2 client machines.
We started an Eagle Eye and Wireshark cap-
ture on two separate machines. Then we ran
the network for 15 minutes, doing normal web
browsing, video streaming, and music streaming
on the 2 client machines. Afterwards we saved
the internal data-structure produced by Eagle-
Eye and the capture file produced by Wireshark.
Finally, since EagleEye can also run off a capture
file (.pcap), we simply fed the capture file to our
monitor to compare the 2 data-structures pro-
duced at the end. We ran this experiment a mul-
tiple times, and found that the data-structures
created were identical in all cases. This means
that EagleEye is not dropping any packets, and
the information captured is accurate.

Moreover, we compared the information dis-
played by the monitor, such as ‘Dropped Pack-
ets’ and compared it to what Wireshark re-
ported. This allowed us to validate that our
calculations and measurements were done cor-
rectly.

4.2 Front-End Responsiveness

Another important characteristic, was for our
tool to be responsive and for the usage experi-
ence to be as clean an quick as possible. To test
for this simply tested the time it took from the
time a packet was received to the time it was ac-
counted for and shown on the user’s front-end.
Now, it is worth noting that our front-end re-
freshes every 5 seconds (which is equivalent to
the size of our time-steps). Thus, we would ex-
pect that for any given packet we would want
that packet to be shown in the front-end in at
most 5 seconds. To test this we simply modi-
fied the front and back-end to use instantaneous
time windows (meaning it would refresh on every
single packet received. Then we crafted a cap-
ture file that contained 100 packets and we fed
that to the EagleEye monitor. On our front-end
we made sure to log the difference between the
packet’s sent time and the moment it reached
our client. Using a standard i5 machine running
Mozilla Firefox on Linux Mint 17, it took on
average 74.2 milliseconds (with a 2.33 std. devi-
ation) for packets to traverse our entire program
flow from capture to front-end. Thus, we proved
that our tool is highly responsive.

4



Figure 3: Screenshot of the Eagle Eye Client Application.

5 Limitations

While there are still many features that could
be added to EagleEye, we believe that the main
limitations that should be addressed are the fol-
lowing:

WPA/WPA2 handshakes One of the main
issues that we encountered when developing Ea-
gleEye, is that to be able to properly decrypt
WPA/WPA2 packets, you not only need the
password, but also the initial client handshake.
This means that if EagleEye won’t be able to
properly monitor clients that were already run-
ning previous to EagleEye’s execution. This is-
sue is not currently addressed, as we assume
most network administrators will be able to reset
their computer’s connection after running our
monitoring software.

Lack of 5GHz support Currently, EagleEye
only works on the 2.4GHz spectrum, which is
arguably the most common spectrum used by
most networking devices. However, as devices
using the 5GHz band become more accessible,
this feature will become a necessity.

Measuring usefulness EagleEye’s current
design is based on our initial interactions with
users, and what we believe would be helpful for
them. However, for this tool to be as useful as
possible, it is important to continue engaging

with the users to fully gauge the usefulness of
further modifications or additions.

6 Future Work

The idea behind EagleEye was to highlight the
importance of good networking tools that em-
power non-technical network managers, and to
start defining a concrete implementation of this.
We believe that for this tool to reach it’s true
potential there has to be further research and
continuous engagement with these users to find
the best additions for the tool. We also believe
that the tool itself should contain guides and
more expansive help sections that quickly teach
the user the basics of networking, thus closing
the user’s knowledge gap.

Aside from the limitations presented in Sec-
tion 5, we believe there is one final addition that
could make this project more complete, Auto-
mated notifications. Having a notification sys-
tem could save users time while trying to catch
rare or otherwise transient misconfiguration or
errors. It could also be extremely useful for se-
curity reasons, as it could alert users of machine
activity at irregular hours, leaked passwords, or
other suspicious behavior.

7 Conclusion

There is still a lot of work to be done to pro-
vide non-technical users with proper tools to

5



effectively manage and troubleshoot their per-
sonal networks. As the Internet becomes more
pervasive and the IoT trends takes flight, the
need to bridge the networking knowledge gap
becomes more imperative. We believe Eagle-
Eye is a step in the right direction of empow-
ering users to properly manage their own net-
works. Lastly, to encourage future development,
we are releasing EagleEye as open source soft-
ware, which can be found at https://github.
com/pmsosa/EagleEye.

References
[1] Parks Associates, “Streaming media de-

vices: Trends and innovations,” Sept 2016.

[2] BBC News, “ ‘smart’ home devices used as
weapons in website attack.” http://www.
bbc.com/news/technology-37738823,
September 2016. [Online; posted 22-
October-2016].

[3] S. Sundaresan, N. Feamster, and R. Teix-
eira, “Measuring the performance of user
traffic in home wireless networks,” in In-
ternational Conference on Passive and Ac-
tive Network Measurement, pp. 305–317,
Springer, 2015.

[4] K. Papagiannaki, M. D. Yarvis, and W. S.
Conner, “Experimental characterization of
home wireless networks and design implica-
tions,” in Infocom, 2006.

[5] A. Patro, S. Govindan, and S. Baner-
jee, “Observing home wireless experience
through wifi aps,” in Proceedings of the
19th annual international conference on
Mobile computing & networking, pp. 339–
350, ACM, 2013.

[6] G. Combs, “Wireshark.” https://www.
wireshark.org, 2016.

[7] Datadog, Inc., “Datadog.” https://www.
datadoghq.com, 2016.

[8] Paessler, Inc., “PRTG.” https://www.
paessler.com/prtg, 2016.

[9] Logic Monitor, Inc., “Logic Monitor.”
https://www.logicmonitor.com, 2016.

[10] Spiceworks, Inc., “Spiceworks.” https://
www.spiceworks.com, 2016.

[11] M. Uma and G. Padmavathi, “An efficient
network traffic monitoring for wireless net-
works,” International Journal of Computer
Applications, vol. 53, no. 9, 2012.

[12] C. So-In, “A survey of network traffic mon-
itoring and analysis tools,” Cse 576m com-
puter system analysis project, Washington
University in St. Louis, 2009.

[13] J. H. Radek Krejcí, “Overview of local net-
work monitoring tools,” CESNET Technical
Report, 2015.

[14] M. Fontanini, “dot11decrypt.” https://
github.com/mfontanini/dot11decrypt,
2016.

[15] M. Fontanini, “libtins.” https://github.
com/mfontanini/libtins, 2016.

[16] SecDev, “Scapy.” https://github.com/
secdev/scapy, 2016.

6

https://github.com/pmsosa/EagleEye
https://github.com/pmsosa/EagleEye
http://www.bbc.com/news/technology-37738823
http://www.bbc.com/news/technology-37738823
https://www.wireshark.org
https://www.wireshark.org
https://www.datadoghq.com
https://www.datadoghq.com
https://www.paessler.com/prtg
https://www.paessler.com/prtg
https://www.logicmonitor.com
https://www.spiceworks.com
https://www.spiceworks.com
https://github.com/mfontanini/dot11decrypt
https://github.com/mfontanini/dot11decrypt
https://github.com/mfontanini/libtins
https://github.com/mfontanini/libtins
https://github.com/secdev/scapy
https://github.com/secdev/scapy

	Motivation
	Related Work
	Implementation
	Architecture
	Features
	Usage

	Testing & Characterization
	Packet Capture Accuracy
	Front-End Responsiveness

	Limitations
	Future Work
	Conclusion

