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Abstract

This paper aims to give researchers an approach-
able introduction to the Supersingular Isogeny Diffie-
Hellman key exchange (SIDH-KEX). SIDH is one of
the few post-quantum key exchange algorithms based
on elliptic curves that has shown potential due to
its small key sizes and quick timing. This paper
will briefly describe the history and motivation of
SIDH. Furthermore, we will present a simple con-
struction of the algorithm along with the mathemat-
ical background needed to understand it. Lastly, we
will present the recommended parameters to use for
potential implementations.

1 Background

As studies in the area of quantum computing seem
to yield promising results, cryptography researchers
are seeking new cryptosystems that could withstand
attacks from such machines. While quantum comput-
ers do not affect secret key cryptography as much?!,
most of the popular public key cryptosystems become
vulnerable [1].

Most popular public key cryptosystems used today
rely on the hardness of the factorization problem. For
classical machines, the best known attacks would take
exponential time, however, quantum computers are
able to do factoring in polynomial time using Shor’s
algorithm.

As a result, there has been an important push
towards the study and implementation of Post-

11t is enough for most secret key cryptographic schemes to
increase their key sizes to provide protection against quantum
adversaries.

Quantum cryptographic protocols in these past few
years. This has yielded many different Post-Quantum
Cryptographic (PQC) schemes based on lattices,
codes, hashes, multivariate equations, and most re-
cently elliptic curves.

This paper will focus on Supersingular Isogenies
Diffie-Hellman (SIDH), which is the one of the few
PQC algorithm based on elliptic curves. It was cre-
ated in 2011 by De Feo, Jao and Plut [2] and has since
been implemented and optimized by others. In 2016,
researchers at Microsoft published a version of SIDH
which ran in constant time and used public keys of
size 564 bytes, showing that SIDH had “strong po-
tential as a PQC candidate”[3].

2 Security and Efficiency

Security Although both ECDH and SIDH use el-
liptic curves, their underlying problem is different.
ECDH’s hardness rests upon the discrete logarithm
problem, whereas SIDH’s hardness rests up the dif-
ficulty of finding the isogeny mapping between two
supersingular elliptic curves with the same number
of points.

It has been proven [4, 5] that SIDH’s security
against classical computers is O(p%), while the secu-

rity against quantum computers has been theorized
1
to be O(ps).

Efficiency SIDH has become substantially more ef-
ficient since its release in 2011. The latest imple-
mentations published in 2016 runs in constant time
and has a public key size of 564 bytes. This key size
is among the smallest in comparison to other PQC
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Figure 1: Visual Representation of SIDH-KEX

key exchange alternatives. This latest implementa-
tion has been added to the Open Quantum Safe’s
“OpenSSL” project to be used for Internet applica-

tions 2.

3 Preliminaries

In this section we will discuss some of the mathemat-
ical constructs and finer details necessary to further
understand the SIDH-KEX.

Elliptic Curves Similar to other elliptic curve
cryptographic schemes, we will assume our chosen
elliptic curve E over Fjp> to be non-singular and of
the Weierstrass form: y? = 2% + ax + b. As such,
all point addition and multiplication must be calcu-
lated by using the functions defined for these types
of curves.

Isogeny An isogeny is a surjective and homomor-
phic structure preserving function that maps two
groups together. In the case of elliptic curves case, a
isogeny ¢ will map points on the domain curve E to
points on a co-domain curve E’. These isogenies are
calculated using Vélu’s formulas [6] as ¢ : E — E/k,
where £ is defined as the kernel.

2Repository: github.com/open-quantum-safe/openssl

j-Invariant The j-invariant is a descriptor that can
be computed for any particular curve using said
curves parameters. Most importantly, isomorphic
curves will always share the same j-invariant value.
The exact equation for the j-invariant will vary de-
pending on the underlying form of the elliptic curve.
In the case of elliptic curves in the Weierstrass form,
the j-invariant is calculated as follows:

44>

J(E) =128 st

Supersingular curves While it might seem a bit
confusing, supersingular curves are non-singular el-
liptic curves as one would expect to find in other el-
liptic curve scheme. The term “supersingular” actu-
ally refers to the fact that they have “singular” values
of the j-invariant and its Hasse invariant is 0. Refer
to section 4.3 for a concrete curve suggestion.

4 Supersingular Isogeny Diffie-
Hellman

Intuitively, the SIDH key exchange works by hav-
ing both parties generate a secret key, which will be
an isogeny based on the known public curve F and
points P,, Qqa, Py, Qp (which reside on E). Then each
party will create and exchange a new curve derived
from their secret isogenies. This new curves can be
considered the “public keys”. Afterwards, by merg-
ing their “private key” isogenies and the other party’s
“public key” curve, each party will be able to gener-
ate a final curve. For both parties, these final curves
will have the same j-invariant (since they are isoge-
nous with respect to each other). As such the value
of this j-invariant becomes the shared secret.

4.1 Public Parameters

Initially there will be 4 global public parameters:
- A prime p
- A supersingular elliptic curve E over F,»
- Four fixed points P,, Qq, Py, @y on E
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Notice that since both curves are isogneous to each
other, they will have the same j-invariant. As such,
the shared key k calculated by both parties will be
the same.

4.3 Parameter Selection

The latest work by Costello et al. [3], defined the
curve E = y?+ 2342 and the prime p = 2372.3239 1,
Furthermore they established the four points on E to
be:

- P, = [3%9](11, V113 + 11)

- Qa = T(Pa)
- P, = [2°7](6,V/6 + 6)
-Qp=7(P)

where 7 is a distortion map from E(Fp2) — E(Fp2) :
(x,y) = (—z,iy). This was done purposely so as to
avoid having to store both @, and @ in memory and
instead derive them from their respective P; points.

5 Future Work

While SIDH seem very promising, there are still some
issues that remain to be solved. Current implemen-
tations assume both parties are honest peers, and
thus, an misbehaving/attacking party could leak in-
formation and weaken then security of the scheme.
Another issue is the lack of crypto-analitic research
done for this scheme, as the literature in which one
can rely is rather limited.

Being a relatively new field, there are still many un-
knowns as to what supersingular isogenies can also be
used for. Aside from key exchange, some researchers
have also worked on applying supersingular curves to
build digital signature schemes [7, 8].

However, with the recent promising developments
in SIDH, work with supersingular curves is bound to
gather more research in the upcoming years.
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